ECONOMIC VULNERABILITY OF SPECIALIZED TOURISM CITY: A CASE STUDY IN SOUTHWEST OF CHINA

Tianyi LI
University of Debrecen, Institution of Earth Science, Department of Social Geography and Regional Development Planning, Debrecen, Hungary, e-mail: tianyi0714@gmail.com

Zoltán BUJDOSÓ
Hungarian University of Agriculture and Life Sciences, Department of Sustainable Tourism, Gyöngyös, Hungary, e-mail: Bujdoso.Zoltan@uni-mate.hu

Abstract: Global epidemics, wars, and lack of resources pose threats to society and the tertiary industry. After the world went through a period of de-globalization for a short period of time since the year 2019, the Global tourism industry suffers a fatal blow. The main objective of this paper is to evaluate the economic vulnerability of a specialized tourism city Dali (a typical tourism city in China) and propose risk avoidance strategies for its sustainable tourism development. This paper establishes a vulnerability assessment model from the aspects of sensitivity and responding capacity by using the set pair analysis (SPA) model to evaluate the economic vulnerability of Dali. The obstacle evaluation model and the entropy value method were used to analyze its obstacle factors. This research employs the National Economic and Social Development Statistics as its primary data source, augmented by the Statistical Yearbook and Yearbooks from different years. The results show that the change of the vulnerability of Dali's tourism economic system is relatively stable, but in general the vulnerability is at a high level in most years. According to the analysis of obstacle factors, the ratio of tourist arrivals to local population, Elasticity coefficient of tourism to industrial growth and National economy (GDP) output value are the main obstacles to reduce the vulnerability of Dali's tourism economy.

Key words: Tourism Industry Vulnerability, Tourism Specialization, Tourism Economic system, Sustainable Tourism Development, Set Pair Analysis

INTRODUCTION

The global economy faces mounting challenges arising from epidemics, conflicts, and the unequal allocation of resources. Simultaneously, human beings and the natural environment share an interconnected existence, emphasizing the imperative of safeguarding and promoting sustainable development of the ecological milieu (Corrigan, 2014; Torvik, 2012; Pitlik et al., 2010). In light of these circumstances, it becomes crucial to explore avenues for sustainable development within the realm of global governance, system revitalization, comprehensive governance, eco-friendly progress, and inclusive participation. Since 2019, the advent of the COVID-19 pandemic has precipitated a brief phase of deglobalization and inflicted severe repercussions on the global tourism industry, thereby refocusing attention on the vulnerability of tourism from an economic perspective (Hojcska et al., 2022, Hojcska-Szabó, 2022).

Vulnerability is one of the important directions of current global change and sustainability scientific research. In recent years, relevant research results have shown a rapid growth trend. With the continuous development of vulnerability theory, vulnerability research has gradually expanded to the field of economics. In 1999, the United Nations Development Program (UNDP) formally proposed the concept of "economic vulnerability" and used it as a measure of the sustainable development of national and regional economies important indicators (Suhrk, 1999). Vulnerability research emphasizes how to achieve sustainable economic development by reducing system vulnerability, and has become one of the important analytical paradigms in the field of urban and regional economic research (Burton et al., 2002).

Tourism industry, as a typical service industry with strong sensitivity, is easily influenced by external environment and own factors (Huang et al., 2021, Kostilnikova et al., 2022). At the same time, it is difficult for cities developed with tourism resources to achieve industrial transformation and upgrading (Guillaumont, 2004). Under the combined influence of sensitivity factors and coping ability factors, the urban tourism economic system finally shows a certain vulnerability. The vulnerability of the tourism economic system is opposed to the sustainable development of tourism, and the degree of vulnerability determines whether the tourism city can achieve sustainable development (Student et al., 2020; Calgaro et al., 2014). Given the rapid growth of tourism, it is crucial to prioritize the vulnerability of the tourism economic system. By accurately predicting vulnerabilities, timely and effective measures can be implemented to mitigate risks and promote the sustainable development of the tourism economic system. Additionally, the resilience of tourism is shaped by the competitive advantage and specialization exhibited by each country (Koufodontis and Gaki, 2022).
In academia, various methods like set pair analysis, principal component analysis, and TOPSIS are commonly used to assess the vulnerability of tourism economic systems (Li, 2013). For example, Li et al. (2021) applying the Delphi-AHP-TOPSIS algorithm to assess the environmental suitability of 684 cities in 2019. But more literature examines the consequences of tourism vulnerability, such as Qin and Chen (2022) conducted a comprehensive study on major tourist cities in China, developing a vulnerability index based on sensitivity and responsiveness. Their research revealed that cities heavily dependent on tourism, with limited economic diversification and weak institutional support, were more susceptible to economic shocks during the pandemic. They emphasized the need to address mechanisms such as reliance on external demand, limited capacity for innovation and adaptation, and inadequate risk management strategies to improve the resilience of tourist cities’ economic systems in future crises. Huang et al. (2021) expanded on the analysis of tourism economic vulnerability (TEV) in major Chinese tourist cities, observing an increasing trend in the TEV index from 2010 to 2019, with coastal cities showing higher vulnerability than inland cities. They highlighted the importance of government measures in reducing TEV and promoting sustainable development in regional tourism. Understanding the spatiotemporal evolution of vulnerability allows policymakers to tailor interventions, mitigating adverse impacts from crises like the COVID-19 pandemic. Shifting the focus to Portugal, Lopes and Sargento (2021) explored the vulnerability of the Portuguese tourism and hospitality industry. The research emphasized the necessity of targeted support measures to address vulnerabilities specific to the Portuguese tourism and hospitality industry, ensuring a more inclusive and resilient recovery.

Existing literature primarily focuses on examining the aftermath of tourism economic vulnerability following emergencies. Nonetheless, the tourism industry is a multifaceted system influenced by numerous factors. This study aims to integrate both qualitative and quantitative elements into the decision-making process using mathematical methods. Moreover, it seeks to address and analyze the effects brought about by uncertain elements such as randomness, ambiguity, and incompleteness. By exploring uncertain systems, this research endeavors to unveil implicit knowledge and uncover underlying laws.

CONCEPT AND CHARACTERISTICS OF ECONOMIC VULNERABILITY OF TOURIST CITY

1. Concept of Economic Vulnerability

The study of vulnerability began in the disaster research in 1981. The scholar Timmerman first proposed the concept of vulnerability, which refers to the degree of damage suffered when adverse events occur (Timmerman, 1981). In 1990, at the UNCTAD conference held in Malta, the term “economic vulnerability” was first proposed; in 1992, Briguglio L. introduced vulnerability to the field of economic research and established the economic vulnerability index (Briguglio, 1992). In 1999, UNDP gave a formal definition of the term “economic vulnerability”, arguing that economic vulnerability refers to the ability to deal with the damage caused by emergencies in the process of economic development. In 1999, UNDP gave a formal definition of the term “economic vulnerability”, arguing that economic vulnerability refers to the ability to deal with the damage caused by emergencies in the process of economic development (Guillaumont, 2010). This paper argues that the economic vulnerability of tourist cities refers to an inherent property that the economic system of tourist cities is restricted by its own characteristics, sensitive to various disturbances inside and outside the system, and lack of coping ability, which makes the system structure and function easily damaged (Gesthuizen and Scheepers, 2010, Kozma, 2010). This property only manifests when disturbed.

2. Characteristics of Economic Vulnerability

The formation of the vulnerability of the tourism economic system is affected by many factors, which can be roughly divided into two aspects: external factors and internal factors of the system (Xie, 2008).

1) The external factors: The complex performance of the external environment of the tourist destination disturbs the tourism economic system. Xie Chaowu calls the external disturbance factors as emergencies outside the tourism industry, and divides them into political crises, social and cultural crises, and economic crises according to the nature of each event. There are four categories of crises and security crises, as shown in Figure 1.

![Figure 1. Types of external emergencies in tourism](image)

2) The internal factors: The vulnerability of the tourism economic system is influenced by internal factors, specifically sensitivity and coping capacity. High sensitivity combined with low coping capacity increases the system’s vulnerability. Sensitivity refers to the impact on the economic system of a tourist city during internal disturbances and
Economic Vulnerability of Specialized Tourism City: A Cast Study in Southwest of China

external shocks. Coping capacity, on the other hand, refers to the system's ability to respond to and recover from adverse impacts caused by various disturbances. This study considers both internal and external coping capabilities, using indicators that cover these factors. In summary, the vulnerability of the tourism economic system is determined by the balance between sensitivity and coping ability. When sensitivity outweighs coping capacity, the system becomes more vulnerable. Figure 2 illustrates how vulnerability increases with higher sensitivity.

RESEARCH METHODS AND MODEL BUILDING

1. Construction of evaluation index system

We finally selected indicators from two aspects: sensitivity and coping ability. In terms of sensitivity indicators, we mainly select five indicators directly related to the tourism economic system; in terms of coping ability indicators, we mainly focus on external economic and social factors. The indicators are selected from two aspects: internal tourism attraction factors. The positive and negative values of the indicator represent the direction of impact on vulnerability, the positive value represents a positive correlation between the indicator and vulnerability, and the negative value represents a negative correlation between the indicator and vulnerability.

Sensitivity index (Table 1) under the condition of certain coping ability, sensitivity and vulnerability are positively correlated. That is, the higher the sensitivity, the higher the vulnerability, and vice versa. Because the economic development of specialized tourism cities is highly dependent on tourism, tourism is the main influencing factor of the economic sensitivity of specialized tourism cities. Therefore, this paper focuses on the relevant indicators reflecting the level of dependence of regional economy on tourism to characterize the sensitivity of economy, which can be divided into two categories: one is the indicators directly reflecting the degree of dependence of regional economic development on tourism, such as S_1, S_4, S_3 and S_5; The other is an indicator that indirectly reflects the dependence of regional economic development on tourism through comparison with other industrial development, such as S_2, S_5, S_6 and S_7.

Among them, S_1 reflects the dependence of the economy on tourism, S_4 reflects the contribution of tourism foreign exchange income to exports, and S_5 reflects regional tourism. The level of industry development can be calculated by directly querying relevant data; S_2 reflects the unbalanced degree of industrial development and S_3 reflects the concentration degree of industrial development structure. S_5 reflects the response of tourism development to economic growth, S_6 reflects the response of tourism to industrial growth, and S_7 reflects the response of tourism to agricultural growth. The calculation method is as follows (Dritsakis, 2004; Sofield, 2003):

$$S_5 = \frac{\text{Growth rate of tourism income}}{\text{Growth rate of GDP}} \quad (1)$$

$$S_6 = \frac{\text{Growth rate of tourism income}}{\text{Growth rate of secondary industry}} \quad (2)$$

$$S_7 = \frac{\text{Growth rate of tourism income}}{\text{Growth rate of primary industry}} \quad (3)$$

Coping capability index (Table 1): There are three main considerations in the selection of coping capacity indicators: one is an indicator reflecting the overall economic strength, R_1 reflects the economic aggregate, and R_2 reflects the economic growth capacity; R_3 reflects the contribution of the industrial structure to economic development, which reflects; the economic development capacity. Since investment, consumption, and net export are the three major factors driving economic growth, they are represented by R_4, R_5, and R_6 respectively; the third is an indicator reflecting the resilience of the tourism industry. R_4 reflects the growth capacity of tourism economy, and R_5 reflects the attractiveness of tourism.

Among them, R_1, R_2, R_3, R_4, R_5, R_6, and R_7 can be directly queried. The calculation method of the R_7 industrial structure diversification index is as follows (Herfindahl and Hirschman, 1950): (The diversification index formula, also known as the Herfindahl-Hirschman Index (HHI), was developed by economists Orris C. Herfindahl and Albert O. Hirschman independently in the 1950s). In the industrial structure diversification index formula, X_i is the proportion of the added value of the i_{th} industry to GDP, and i is 1, 2, and 3 respectively.

$$H = \frac{1}{\sum_{i=1}^{3} X_i^2} \quad (4)$$

<table>
<thead>
<tr>
<th>primary indicator</th>
<th>code</th>
<th>Secondary indicators</th>
<th>properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity index</td>
<td>S_1</td>
<td>Tourism revenue as a share of GDP (%)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>S_2</td>
<td>Industrial Structure Gini Coefficient</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>S_3</td>
<td>The first degree of tourism industry</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>S_4</td>
<td>Proportion of tourism foreign exchange earnings in exports</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>S_5</td>
<td>Elasticity coefficient of tourism to GDP growth</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>S_6</td>
<td>Elasticity coefficient of tourism to industrial growth</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>S_7</td>
<td>Elasticity coefficient of tourism to agricultural growth</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>S_8</td>
<td>The ratio of tourist arrivals to local population</td>
<td>+</td>
</tr>
<tr>
<td>Coping capability index</td>
<td>R_1</td>
<td>National economy (GDP) output value</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R_2</td>
<td>National economy (GDP) growth rate (%)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R_3</td>
<td>Fixed asset investment growth rate</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R_4</td>
<td>Urban and Rural Consumption Growth Rate</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R_5</td>
<td>export growth rate (%)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R_6</td>
<td>Growth rate of total tourism revenue (%)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R_7</td>
<td>Industrial Structure Diversification Index</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R_8</td>
<td>Tourism revenue growth rate</td>
<td>-</td>
</tr>
</tbody>
</table>

"+" indicates a positive correlation, "-" indicates a negative correlation.
2. Determination and calculation of the weights of the vulnerability index

Using the entropy method to calculate the weight of the vulnerability index of the tourism economic system in Dali Prefecture, in this paper, the entropy value method commonly used in the objective assignment method is selected to calculate the weight. The calculation results are shown in Table 2. Calculate the contribution of the \(j \text{th} \) index of the \(i \text{th} \) year or the \(i \text{th} \) evaluation object, and the calculation formula is (Chen et al., 2009):

\[
P = \frac{x_{ij}}{\sum_{i=1}^{n} x_{ij}}
\]

(5)

Calculate the information entropy of the \(j \text{th} \) index of the \(i \text{th} \) year or the \(i \text{th} \) evaluation object, and the calculation formula is (Chen et al., 2009):

\[
e_j = -\frac{1}{\ln n} \sum_{i=1}^{n} p_{ij} \ln p_{ij}
\]

(6)

In the formula, \(n \) represents the number of years or the number of evaluation objects. Calculate the effect value of the \(j \text{th} \) index of the \(i \text{th} \) year or the \(i \text{th} \) evaluation object, and the calculation formula is (Chen et al., 2009):

\[
d_j = 1 - e_j
\]

(7)

Calculate the weight value of the \(j \text{th} \) index of the \(i \text{th} \) year or the \(i \text{th} \) evaluation object, and the calculation formula is (Chen et al., 2009):

\[
w_j = \frac{d_j}{\sum_{j=1}^{s} d_j}
\]

(8)

3. Construction of Vulnerability Assessment Model

The tourist city economic system is an open and complex system, and there are many deterministic and uncertain factors. Therefore, this paper chooses the set-pair analysis method, which focuses on solving the problems of certainty and uncertainty in the system, to evaluate the degree of vulnerability of the tourist city's economic system. Set Pair Analysis (SPA) is a method for quantitative analysis of similarities, differences and inversions for deterministic and uncertain problems, which can effectively solve the problems of multi-objective decision-making and multi-attribute evaluation (Li, 2013a; Su and Zhang, 2010). The core idea of set pair analysis is to regard certainty and uncertainty factors as a system, and regard set A and set B that have a certain connection as a set pair H. Assuming that according to the needs of the problem W, we analyze the characteristics of the set pair H, and obtain a total of N characteristics, of which S characteristics are shared by set A and set B, P characteristics are set A and set B are opposed, and in the rest On the F = N - S - P features of , the set A and the set B are neither opposite, nor one (Zhao, 2000). Then the connection degree \(\mu \) of set A and set B under specific problem W can be expressed as. Determine the optimal and worst scheme, and obtain the optimal value and the worst value vector (Su and Zhang, 2010):

\[
D_1^+ = \frac{1}{\sqrt{\sum_{j=1}^{n} (Z_{ij} - Z_{ij})^2}} = b
\]

(9)

\[
D_1^- = \frac{1}{\sqrt{\sum_{j=1}^{n} (Z_{ij} - Z_{ij})^2}} = a
\]

(10)

Calculate the overall evaluation value (Su and Zhang, 2010):

The comprehensive evaluation value \(C_i \) is between 0-1. A higher \(C_i \) value indicates a more fragile system, and vice versa (Xiang et al., 2022; Su et al., 2020; Li, 2013b).

4. Construction of Obstacle Assessment Model

The main function of the obstacle degree evaluation model is to calculate the degree of obstacles of each index to reduce the vulnerability of the tourism economic system, so as to determine the main factors affecting the vulnerability (Cutter, 1996; Watson et al., 1998; Briguglio, 1992). The larger the obstacle degree value, the greater the hindering effect of this index on reducing the vulnerability of the tourism economic system; the smaller the obstacle degree value, the less the hindering effect of this index on reducing the vulnerability of the tourism economic system. In this paper, the calculation formula of the obstacle degree evaluation model is as follows (Su and Zhang, 2010):

\[
Q_i = \frac{w_j \times F_i}{\sum_{i=1}^{n} w_j \times F_i} \times 100\%
\]

(12)

In the formula, \(Q_i \) is the fragility obstacle degree of the economic system; \(F_i \) is the index deviation degree, \(F_i = 1 - x_i^- \) (\(x_i^- \) is the standardized value of the \(i \text{th} \) index) (Zhang et al., 2021; Zhao et al., 2022; Chen et al., 2022).

RESEARCH AREA

Dali Prefecture is a famous tourist city in the southwestern border of China. It is one of the cities with an early start of tourism in Yunnan Province and even the whole country. Its rich tourism resources have enabled the rapid development of tourism in Dali Prefecture. Dali, situated in southwestern Yunnan Province, China, boasts a captivating blend of natural and cultural features. Geographically, it lies at approximately 25.6°N, 100.2°E, encompassing an area of 14,500 square kilometers (Figure 3). Dali Ancient City, enclosed by well-preserved Ming Dynasty city walls, retains its traditional architectural style and offers a glimpse into the region’s historical heritage. To the east, Erhai Lake, covering 250 square kilometers, showcases scenic beauty with its clear waters mirroring the surrounding mountains. The Cangshan Mountain Range, with peaks exceeding 4,000 meters, serves as a picturesque backdrop to Dali and provides opportunities for hiking.
and exploration. Moving south from Dali Ancient City, Xiaguan serves as the modern district and serves as the economic and transportation hub of the region. Noteworthy attractions in the vicinity include Xizhou and Zhoucheng villages, renowned for their Bai ethnic minority culture, traditional architecture, and tie-dye techniques.

Dali experiences a mild climate, characterized by warm summers (averaging 25-28 degrees Celsius) and cool winters (8-12 degrees Celsius). Spring and autumn offer pleasant temperatures and vibrant landscapes.

Dali’s geographical composition, encompassing the ancient city, Erhai Lake, the Cangshan Mountains, and surrounding villages, showcases a captivating interplay of natural beauty and cultural heritage, making it a remarkable destination for exploration and appreciation of southwestern China’s allure.

In 2016, the tourism revenue of Dali Prefecture exceeded 5 million yuan (1CNY≈0.12 EUR) for the first time, reaching 534.6 billion CNY, accounting for 54.9% of the GDP. In 2019, tourism revenue was 941.9 billion CNY, accounting for 67.68% of the GDP. It can be seen that tourism has become the pillar industry of Dali Prefecture. Since 2015, the local economy has been highly dependent on the development of the tourism industry. In 2020 and 2021, the epidemic will have a huge impact on the local tourism industry, and the local economy from tourism industry has been hit hard.

In 2016, the tourism revenue of Dali Prefecture exceeded 5 million yuan (1CNY≈0.12 EUR) for the first time, reaching 534.6 billion CNY, accounting for 54.9% of the GDP. In 2019, tourism revenue was 941.9 billion CNY, accounting for 67.68% of the GDP. It can be seen that tourism has become the pillar industry of Dali Prefecture. Since 2015, the local economy has been highly dependent on the development of the tourism industry. In 2020 and 2021, the epidemic will have a huge impact on the local tourism industry, and the local economy from tourism industry has been hit hard.

In 2016, the tourism revenue of Dali Prefecture exceeded 5 million yuan (1CNY≈0.12 EUR) for the first time, reaching 534.6 billion CNY, accounting for 54.9% of the GDP. In 2019, tourism revenue was 941.9 billion CNY, accounting for 67.68% of the GDP. It can be seen that tourism has become the pillar industry of Dali Prefecture. Since 2015, the local economy has been highly dependent on the development of the tourism industry. In 2020 and 2021, the epidemic will have a huge impact on the local tourism industry, and the local economy from tourism industry has been hit hard.

In 2016, the tourism revenue of Dali Prefecture exceeded 5 million yuan (1CNY≈0.12 EUR) for the first time, reaching 534.6 billion CNY, accounting for 54.9% of the GDP. In 2019, tourism revenue was 941.9 billion CNY, accounting for 67.68% of the GDP. It can be seen that tourism has become the pillar industry of Dali Prefecture. Since 2015, the local economy has been highly dependent on the development of the tourism industry. In 2020 and 2021, the epidemic will have a huge impact on the local tourism industry, and the local economy from tourism industry has been hit hard.

In 2016, the tourism revenue of Dali Prefecture exceeded 5 million yuan (1CNY≈0.12 EUR) for the first time, reaching 534.6 billion CNY, accounting for 54.9% of the GDP. In 2019, tourism revenue was 941.9 billion CNY, accounting for 67.68% of the GDP. It can be seen that tourism has become the pillar industry of Dali Prefecture. Since 2015, the local economy has been highly dependent on the development of the tourism industry. In 2020 and 2021, the epidemic will have a huge impact on the local tourism industry, and the local economy from tourism industry has been hit hard.

In 2016, the tourism revenue of Dali Prefecture exceeded 5 million yuan (1CNY≈0.12 EUR) for the first time, reaching 534.6 billion CNY, accounting for 54.9% of the GDP. In 2019, tourism revenue was 941.9 billion CNY, accounting for 67.68% of the GDP. It can be seen that tourism has become the pillar industry of Dali Prefecture. Since 2015, the local economy has been highly dependent on the development of the tourism industry. In 2020 and 2021, the epidemic will have a huge impact on the local tourism industry, and the local economy from tourism industry has been hit hard.

In 2016, the tourism revenue of Dali Prefecture exceeded 5 million yuan (1CNY≈0.12 EUR) for the first time, reaching 534.6 billion CNY, accounting for 54.9% of the GDP. In 2019, tourism revenue was 941.9 billion CNY, accounting for 67.68% of the GDP. It can be seen that tourism has become the pillar industry of Dali Prefecture. Since 2015, the local economy has been highly dependent on the development of the tourism industry. In 2020 and 2021, the epidemic will have a huge impact on the local tourism industry, and the local economy from tourism industry has been hit hard.

In 2016, the tourism revenue of Dali Prefecture exceeded 5 million yuan (1CNY≈0.12 EUR) for the first time, reaching 534.6 billion CNY, accounting for 54.9% of the GDP. In 2019, tourism revenue was 941.9 billion CNY, accounting for 67.68% of the GDP. It can be seen that tourism has become the pillar industry of Dali Prefecture. Since 2015, the local economy has been highly dependent on the development of the tourism industry. In 2020 and 2021, the epidemic will have a huge impact on the local tourism industry, and the local economy from tourism industry has been hit hard.

In 2016, the tourism revenue of Dali Prefecture exceeded 5 million yuan (1CNY≈0.12 EUR) for the first time, reaching 534.6 billion CNY, accounting for 54.9% of the GDP. In 2019, tourism revenue was 941.9 billion CNY, accounting for 67.68% of the GDP. It can be seen that tourism has become the pillar industry of Dali Prefecture. Since 2015, the local economy has been highly dependent on the development of the tourism industry. In 2020 and 2021, the epidemic will have a huge impact on the local tourism industry, and the local economy from tourism industry has been hit hard.

In 2016, the tourism revenue of Dali Prefecture exceeded 5 million yuan (1CNY≈0.12 EUR) for the first time, reaching 534.6 billion CNY, accounting for 54.9% of the GDP. In 2019, tourism revenue was 941.9 billion CNY, accounting for 67.68% of the GDP. It can be seen that tourism has become the pillar industry of Dali Prefecture. Since 2015, the local economy has been highly dependent on the development of the tourism industry. In 2020 and 2021, the epidemic will have a huge impact on the local tourism industry, and the local economy from tourism industry has been hit hard.

In 2016, the tourism revenue of Dali Prefecture exceeded 5 million yuan (1CNY≈0.12 EUR) for the first time, reaching 534.6 billion CNY, accounting for 54.9% of the GDP. In 2019, tourism revenue was 941.9 billion CNY, accounting for 67.68% of the GDP. It can be seen that tourism has become the pillar industry of Dali Prefecture. Since 2015, the local economy has been highly dependent on the development of the tourism industry. In 2020 and 2021, the epidemic will have a huge impact on the local tourism industry, and the local economy from tourism industry has been hit hard.
1. Vulnerability Analysis

Evaluation results: The entropy method was used to calculate the weight of the vulnerability index of the tourism economic system in Dali Prefecture from 2004 to 2019. According to the SPA model of formulas (1) - (5), the economic vulnerability, sensitivity and coping capacity of tourism cities are calculated in Table 4 and Figure 4). In order to reveal the economic vulnerability among tourist cities, the vulnerability mean M=0.4407 and standard deviation Std=0.1074 as the evaluation basis, the economic vulnerability rm is divided into four categories (Table 5). In-depth analysis from two aspects of economic sensitivity and coping capacity. Economic system is divided into six levels: low vulnerability, moderate vulnerability, high vulnerability and high vulnerability. The results are shown in Table 5.

2. Obstacle Assessment

Reducing system vulnerability is the key to sustainable economic development premise, in order to further reveal the obstacles to the economic development of cities.

The primary focus for reducing vulnerability entails the introduction of the obstacle degree concept. By applying calculation formula 12, the obstacle degree value of Dali's tourism economic system vulnerability over the preceding ten-year period is determined. The subsequent analysis of these results is visually presented and documented in Table 6.

According to the analysis of the visualization chart results, during the 2004 to 2014, the highly frequency obstacle indicators to reduce the vulnerability of tourism economy in Dali Prefecture are sensitivity (S5, S6) and coping ability (R3); after the 2014 the coping ability (R3, R5) obstacles become increasingly prominent, during the 2014 to 2019 the mainly obstacle indicators gradually changed to R4, R5.

Looking at the overall situation, in the early stage, it was restricted by the system's internal factors, which are the industrial structure of the region and its own economic development; in the later stage, it was restricted by external factors, that is, the boosting force of investment and exports to the industry.
And we select the top five indicators in each year (Table 6), and determine the main factors that hinder the reduction of the vulnerability of Dali’s tourism economic system (Shown in Figuer 5). On the whole, in the past fifteen years, the most frequent obstacles to the vulnerability of the tourism economic system in Dali Prefecture are the ratio of tourist arrivals to local population (S₁), Elasticity coefficient of tourism to industrial growth (S₅) and National economy (GDP) output value. (R₄), which are the biggest obstacles to reducing the vulnerability of Dali’s tourism economy; It is worth noting that the Sino-US trade war broke out in 2018, China’s export economy was seriously affected, and the impact of the export economy on the local tourism industry was also shown in the obstacle analysis. Export growth rate (R₅) is called the maximum obstacle degree in the 2019 annual data.

<table>
<thead>
<tr>
<th>Year</th>
<th>1st obstacle</th>
<th>2nd obstacle</th>
<th>3rd obstacle</th>
<th>4th obstacle</th>
<th>5th obstacle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>S₁ 0.1897</td>
<td>R₇ 0.1795</td>
<td>S₆ 0.1564</td>
<td>S₇ 0.0885</td>
<td>R₅ 0.0841</td>
</tr>
<tr>
<td>2005</td>
<td>S₆ 0.1866</td>
<td>R₇ 0.1747</td>
<td>S₆ 0.1711</td>
<td>S₇ 0.0812</td>
<td>S₅ 0.0690</td>
</tr>
<tr>
<td>2006</td>
<td>S₅ 0.1742</td>
<td>R₆ 0.1608</td>
<td>S₆ 0.1606</td>
<td>R₇ 0.1216</td>
<td>S₅ 0.0776</td>
</tr>
<tr>
<td>2007</td>
<td>S₆ 0.1840</td>
<td>S₆ 0.1707</td>
<td>R₆ 0.1668</td>
<td>S₇ 0.0844</td>
<td>S₅ 0.0701</td>
</tr>
<tr>
<td>2008</td>
<td>S₆ 0.1685</td>
<td>S₆ 0.1604</td>
<td>R₆ 0.1473</td>
<td>R₇ 0.0996</td>
<td>S₅ 0.0831</td>
</tr>
<tr>
<td>2009</td>
<td>S₅ 0.2014</td>
<td>R₆ 0.1780</td>
<td>S₆ 0.1560</td>
<td>R₇ 0.1100</td>
<td>S₅ 0.0932</td>
</tr>
<tr>
<td>2010</td>
<td>S₅ 0.2132</td>
<td>R₆ 0.1964</td>
<td>S₆ 0.1837</td>
<td>S₇ 0.1004</td>
<td>S₅ 0.0673</td>
</tr>
<tr>
<td>2011</td>
<td>R₅ 0.1970</td>
<td>R₆ 0.1876</td>
<td>S₆ 0.1528</td>
<td>S₇ 0.0930</td>
<td>S₅ 0.0757</td>
</tr>
<tr>
<td>2012</td>
<td>R₅ 0.2023</td>
<td>S₆ 0.1789</td>
<td>R₆ 0.1667</td>
<td>R₇ 0.1564</td>
<td>S₅ 0.0976</td>
</tr>
<tr>
<td>2013</td>
<td>S₆ 0.1780</td>
<td>S₆ 0.1777</td>
<td>R₆ 0.1360</td>
<td>R₇ 0.1009</td>
<td>S₅ 0.0882</td>
</tr>
<tr>
<td>2014</td>
<td>S₆ 0.1598</td>
<td>S₆ 0.1249</td>
<td>R₆ 0.1244</td>
<td>R₇ 0.1196</td>
<td>R₈ 0.1188</td>
</tr>
<tr>
<td>2015</td>
<td>R₅ 0.1575</td>
<td>S₆ 0.1375</td>
<td>S₆ 0.1170</td>
<td>R₆ 0.1042</td>
<td>R₇ 0.0897</td>
</tr>
<tr>
<td>2016</td>
<td>R₆ 0.2396</td>
<td>R₆ 0.1691</td>
<td>S₆ 0.1566</td>
<td>S₆ 0.1450</td>
<td>S₅ 0.0618</td>
</tr>
<tr>
<td>2017</td>
<td>S₆ 0.1860</td>
<td>R₆ 0.1750</td>
<td>R₆ 0.1164</td>
<td>S₆ 0.0901</td>
<td>S₅ 0.0718</td>
</tr>
<tr>
<td>2018</td>
<td>S₆ 0.2096</td>
<td>R₆ 0.1781</td>
<td>R₆ 0.1485</td>
<td>R₇ 0.1151</td>
<td>R₈ 0.0696</td>
</tr>
<tr>
<td>2019</td>
<td>S₇ 0.3672</td>
<td>R₆ 0.1672</td>
<td>R₆ 0.1342</td>
<td>R₇ 0.1011</td>
<td>S₅ 0.0735</td>
</tr>
</tbody>
</table>

CONCLUSION

This study focuses on Dali Prefecture and establishes a vulnerability index system for the tourism economic system based on sensitivity and coping ability. The analysis reveals the following findings:

- Dali's tourism economic system exhibits an upward fluctuating trend in sensitivity, with a relatively stable ability to respond to small fluctuations. The vulnerability shows a steady increase, reaching a high level in most years.

- Factors impeding the reduction of Dali's tourism vulnerability include the ratio of tourist arrivals to the local population, the elasticity coefficient of tourism to industrial growth, and the national economy’s output value (GDP).

- Addressing the vulnerability of the tourism economic system requires considering both internal and external factors. Internally, optimizing the system's structure is essential. This involves focusing on customer sources, particularly by reducing the proportion of inbound tourists and foreign exchange income from tourism, which are more susceptible to external influences. Additionally, enhancing tourism attractiveness by leveraging local cultural resources is crucial to reduce vulnerability.

- Externally, the development of the tourism industry is reliant on the external environment. Thus, optimizing the external environment can contribute to reducing vulnerability. The national economic growth rate, national economic output value, and industrial structure diversification index are significant obstacles hindering vulnerability reduction. Therefore, Dali Prefecture should prioritize developing the national economy, optimizing economic and industrial structures, and ensuring sustainable and healthy economic growth to provide favorable support for the tourism economy's development.

Author Contributions: Conceptualization, T.L. and Z.B.; methodology, T.L. and Z.B.; software, T.L.; validation, T.L.; formal analysis, T.L.; investigation, T.L.; data curation, T.L.; writing - original draft preparation, T.L.; writing - review and editing, T.L.; visualization, T.L.; supervision, Z.B.; project administration, Z.B. All authors have read and agreed to the published version of the manuscript.

Funding: Not applicable.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study may be obtained on request from the corresponding author.

Acknowledgments: The authors would like to take this opportunity to thank to Dr. Cheng Fengxian, for his help of the math and modeling problems in research.

Conflicts of Interest: The authors declare no conflict of interest.

REFERENCES

Article history: Received: 02.03.2023 Revised: 19.04.2023 Accepted: 22.05.2023 Available online: 21.06.2023